18 research outputs found

    A distributed anomaly detection system for in-vehicle network using HTM

    Get PDF
    With the development of 5G and Internet of Vehicles technology, the possibility of remote wireless attack on an in-vehicle network has been proven by security researchers. Anomaly detection technology can effectively alleviate the security threat, as the first line of security defense. Based on this, this paper proposes a distributed anomaly detection system using hierarchical temporal memory (HTM) to enhance the security of a vehicular controller area network bus. The HTM model can predict the flow data in real time, which depends on the state of the previous learning. In addition, we improved the abnormal score mechanism to evaluate the prediction. We manually synthesized field modification and replay attack in data field. Compared with recurrent neural networks and hidden Markov model detection models, the results show that the distributed anomaly detection system based on HTM networks achieves better performance in the area under receiver operating characteristic curve score, precision, and recall

    Accurate Sybil attack detection based on fine-grained physical channel information

    Get PDF
    With the development of the Internet-of-Things (IoT), wireless network security has more and more attention paid to it. The Sybil attack is one of the famous wireless attacks that can forge wireless devices to steal information from clients. These forged devices may constantly attack target access points to crush the wireless network. In this paper, we propose a novel Sybil attack detection based on Channel State Information (CSI). This detection algorithm can tell whether the static devices are Sybil attackers by combining a self-adaptive multiple signal classification algorithm with the Received Signal Strength Indicator (RSSI). Moreover, we develop a novel tracing scheme to cluster the channel characteristics of mobile devices and detect dynamic attackers that change their channel characteristics in an error area. Finally, we experiment on mobile and commercial WiFi devices. Our algorithm can effectively distinguish the Sybil devices. The experimental results show that our Sybil attack detection system achieves high accuracy for both static and dynamic scenarios. Therefore, combining the phase and similarity of channel features, the multi-dimensional analysis of CSI can effectively detect Sybil nodes and improve the security of wireless network

    AI of Brain and Cognitive Sciences: From the Perspective of First Principles

    Full text link
    Nowadays, we have witnessed the great success of AI in various applications, including image classification, game playing, protein structure analysis, language translation, and content generation. Despite these powerful applications, there are still many tasks in our daily life that are rather simple to humans but pose great challenges to AI. These include image and language understanding, few-shot learning, abstract concepts, and low-energy cost computing. Thus, learning from the brain is still a promising way that can shed light on the development of next-generation AI. The brain is arguably the only known intelligent machine in the universe, which is the product of evolution for animals surviving in the natural environment. At the behavior level, psychology and cognitive sciences have demonstrated that human and animal brains can execute very intelligent high-level cognitive functions. At the structure level, cognitive and computational neurosciences have unveiled that the brain has extremely complicated but elegant network forms to support its functions. Over years, people are gathering knowledge about the structure and functions of the brain, and this process is accelerating recently along with the initiation of giant brain projects worldwide. Here, we argue that the general principles of brain functions are the most valuable things to inspire the development of AI. These general principles are the standard rules of the brain extracting, representing, manipulating, and retrieving information, and here we call them the first principles of the brain. This paper collects six such first principles. They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development.Comment: 59 pages, 5 figures, review articl

    Abstracts of presentations on plant protection issues at the fifth international Mango Symposium Abstracts of presentations on plant protection issues at the Xth international congress of Virology: September 1-6, 1996 Dan Panorama Hotel, Tel Aviv, Israel August 11-16, 1996 Binyanei haoma, Jerusalem, Israel

    Get PDF

    WiFi-Based Real-Time Calibration-Free Passive Human Motion Detection

    No full text
    With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate

    Robust Device-Free Intrusion Detection Using Physical Layer Information of WiFi Signals

    No full text
    WiFi infrastructures are widely deployed in both public and private buildings. They make the connection to the internet more convenient. Recently, researchers find that WiFi signals have the ability to sense the changes in the environment that can detect human motion and even identify human activities and his identity in a device-free manner, and has many potential security applications in a smart home. Previous human detection systems can only detect human motion of regular moving patterns. However, they may have a significant detection performance degradation when used in intrusion detection. In this study, we propose Robust Device-Free Intrusion Detection (RDFID) system leveraging fine-grained Channel State Information (CSI). The noises in the signals are removed by a Principle Component Analysis (PCA) and a low pass filter. We extract a robust feature of frequency domain utilizing Continuous Wavelet Transform (CWT) from all subcarriers. RDFID captures the changes from the whole wireless channel, and a threshold is obtained self-adaptively, which is calibration-free in different environments, and can be deployed in smart home scenarios. We implement RDFID using commodity WiFi devices and evaluate it in three typical office rooms with different moving patterns. The results show that our system can accurately detect intrusion of different moving patterns and different environments without re-calibration

    Robust Light-Weight Magnetic-Based Door Event Detection with Smartphones

    No full text
    corecore